FILTERS

GENERAL
Viking Series 90 air handling units are fitted as standard with disposable, metal framed filters. Dirty filters will reduce the airflow through the system and on units fitted with electric heaters may lead to nuisance tripping of the thermal Cut Out On the heater.
Use of a filter monitor or manometer will help to determine when the filters require changing. Instructions are given below for fitting our FLG 1.5 inclined manometer which is available as an optional extra.

INSPECTION & CHANGING
The filters should be periodically inspected and changed when they become heavily soiled or the pressure drop has increased. The period between filter changes will vary depending on the air volume, air quality and periods of operation of the unit and can only be determined by regular inspection on site. The filters should always be inspected prior to the unit first going into service.

FLG 1.5 MANOMETER

GENERAL
The FLG 1.5 gauge is a simple inclined manometer for measuring the pressure drop across filters in air handling systems. Its solid perspex construction makes it tough, attractive and corrosion proof. The gauge comes complete with duct connectors, fluid, tubing and fixing screws.

INSTALLATION & OPERATION
The instrument should be mounted on a vertical surface with the top edge set horizontally (for accuracy use a spirit level). Drill two 4mm diameter holes to take the large fixing screws. Mount the gauge firmly using the fixing screws and washers. The screw heads should be flush with the face of the washers but do not over-tighten and distort the plastic washer. Only remove the red connector caps once the gauge is firmly fixed to avoid spillage.

If the gauge is unfilled, turn the level adjuster at the bottom of the reservoir so that the sealing ring is at the centre of its travel (approximately 4mm above thread end). Fill with manometer fluid through the left-hand pressure connector until the fluid level is approximately at the zero position. If the gauge is already filled or you have just filled it then use the level adjuster to obtain exact zero.

Fix a duct connector each side of the filter making sure that sufficient length of tubing available to reach the gauge. Use a 6mm drill for the nozzle and a 3mm drill for the small fixing screws. Cut the tube into suitable lengths and connect the upstream duct connector to the bottom gauge connector and the downstream side to the top.

MAINTENANCE
The gauge should remain relatively maintenance free. However, it is advisable to check the zero position occasionally and if necessary reset using the level adjuster. If the gauge becomes dirty internally it may be stripped down, emptied and the body washed in a mild detergent solution. Rinse thoroughly, dry completely and reassemble. Ensure the gauge is refilled with clean manometer fluid.

The following manometer fluid only should be used:

Type FLG 1.5 (0 - 1.5 ins wg) Red Manometer Fluid
VIKING SERIES 90
Operating & Maintenance Instructions

HEATER SECTION (LPHW & STEAM)

LPHW HEATERS
Water Connection (assuming horizontal airflow) Dia. A
The water supply should be connected so that the water enters via the lower connection and leaves via the upper connection. When the coil is filled for the first time it should be thoroughly vented to ensure that all the air has been displaced.

Cleaning
Any deposits or dirt on the heater fins will impair the heat transfer; therefore, the coil should be kept clean. Vacuum cleaning or careful blowing with compressed air in a direction parallel with the fins should carry out cleaning. If the dust is greasy, use a cold degreasing agent suitable for aluminium fins. After cleaning always remove any dust or liquid from the unit before starting the fan.

STEAM HEATERS
Steam Connection (assuming horizontal airflow) Dia. B
The steam supply should be connected so that the steam enters via the top pipe and the steam condense leaves via the lower pipe.

Cleaning
Any deposits or dirt on the heater fins will impair the heat transfer; therefore, the coil should be kept clean. Cleaning should be carried out by vacuum - cleaning or careful blowing with compressed air in a direction parallel with the fins. If the dust is greasy, use a cold degreasing agent suitable for aluminium fins. After cleaning always remove any dust or liquid from the unit before starting the fan.

Condensate Removal
When air, water or another product is heated, the temperature or heat transfer rate can be regulated by a modulating steam pressure control valve. Since pressure and temperature do not vary at the same rate as load, the steam trap capacity, which is determined by the pressure differential between the trap inlet and outlet, may be adequate at full load but not at some lesser load.

Analysis shows that steam pressure must be reduced dramatically to achieve a slight lowering of temperature. In most applications this can result in sub-atmospheric pressure in the coil, while as much as 75% of full condensate load has to be handled by the steam trap. This is especially important for coils exposed to outside air, since sub-atmospheric conditions can occur in the coil at outside temperatures below 32°F (0°C) and the coil will freeze if the condensate is not removed.

There are detailed methods for determining condensate load under various operating conditions. However, in most cases this load does not need to be calculated if the coils are piped as shown in Fig.1 (overleaf) and this procedure is followed.
HEATER SECTION (LPHW & STEAM) (cont...)

1. The steam trap should be 1 to 3 ft (0.3 to 0.9 m) below the bottom of the steam coil to provide a hydraulic head of approximately 0.5 to 1.5 psig (3.5 to 10.3 kPa above atm.). Location of the trap at less than 12 in (300 mm) minimum usually results in improper drainage and operating difficulties.

2. Vacuum breakers must be installed between the coil and trap inlet to ensure that the hydraulic head can drain the coil when it is at atmospheric or sub-atmospheric pressure. The vacuum breaker should respond to a differential pressure of no greater than 3 in or water (750 Pa). For atmospheric returns, the vacuum breaker should be opened to the atmosphere and the return system must be designed to ensure no pressurization of the return line. In vacuum return systems, the vacuum breaker should be piped to the return line.

3. Discharge from the trap must flow by gravity, without any lifts in the piping, to the return system, which must be vented properly to the atmosphere to eliminate any back pressure that could prevent the trap from draining the coil. Where the return main is overhead, the trap discharge should flow by gravity to a vented receiver from which it is then pumped to the overhead return.

4. Traps must be designed to operate at maximum pressure at the control valve inlet and sized to handle the full condensate load at a pressure differential equal to the hydraulic head between the trap and coil. Since the actual condensate load can vary from the theoretical design load, because of the safety factors used in coil selection and the fact that condensate does not always form at a uniform steady rate, steam traps should be sized according to the following:
 a. 0-1 psig (0 to 100 kPa above atm.) at the control valve inlet: size the trap for twice the full condensate load (coil condensing rate at maximum design conditions) at 0.5 psi (3.5 kPa) pressure differential.
 b. 16-30 psig (110 to 200 kPa above atm.) at the control valve inlet: size the trap for twice the full condensate load at 2 psi (14 kPa) pressure differential.
 c. 31 psig (210 kPa above atm.) at the control valve inlet: size the trap to handle triple the full condensate load at a pressure differential equal to half the control valve inlet pressure.

![Diagram of steam trap and vacuum breaker system](image-url)
HEATER SECTION (ELECTRIC) (cont...)

CONNECTION DIAGRAMS - ELECTRIC AIR HEATERS SINGLE PHASE

FACTORY WIRED TO HEATING ELEMENTS AND THERMAL CUT-OUT

CONTRACTORS WIRING
STAT = THERMAL CUT-OUT (NORMALLY CLOSED)

FACTORY WIRED TO HEATING ELEMENTS AND THERMAL CUT-OUT

CONTRACTORS WIRING
STAT = THERMAL CUT-OUT (NORMALLY CLOSED)
HEATER SECTION (ELECTRIC) (cont...)

Connection Diagrams - Electric Air Heaters Three Phase
VIKING SERIES 90
Operating & Maintenance Instructions

HEATER SECTION (ELECTRIC)

SAFETY
Always fit an isolator switch to protect maintenance staff from accidental re-connection by others. Ensure that the cover is fitted properly and marked with a warning label: ISOLATE SUPPLY BEFORE REMOVING THIS COVER

EARTHING
The electric heater must be earthed in accordance with the requirements of your supply authority or relevant code of practice.
The earth conductor must be of adequate rating to conduct the maximum fault current.

AIRFLOW
Air velocity across the elements should be greater than 2m/sec to maintain surface temperature of less than 400°C and prevent nuisance tripping of the high temperature cut out. The leaving air temperature should never be allowed to exceed 40°C.

IMPORTANT: If you wish to use a fan speed controller on a unit fitted with an electric heater please consult our Viking Customer Services Department or Technical Services, unless this requirement was made specific at time of ordering.

THE HEATER SHOULD NEVER BE SWITCHED ON WHEN THERE IS NO AIRFLOW

WIRING
Cable connections to heating elements should be Tri-rated silicon or other high temp type. Allow for 80°C in the terminal box. All wiring should be undertaken by a qualified electrician in accordance with the latest I.E.E. Regulations.

THERMAL CUT OUT
Viking Series 90 electric heaters are fitted as standard with a manual re-set, normally closed type thermal cut out. This must be connected to the contactor coil or electric heater controller to shut the heater down in the event of over temperature in the heater casing. The cut out is set to operate at 80°C. The manual reset button is located on the side of the heater cassette inside the unit casing and can be reached via an access door adjacent to the heater section.

In the event of the cut out operating always investigate and rectify the cause before resetting. Typical reasons for the cut out operating are reduced or failed airflow. Check that there are no obstructions to airflow within the unit or ductwork, that the fan is operating correctly and that the filters are not blocked or in need of changing.

AUTO RESET THERMAL CUT OUT
Some units may be fitted with an auto reset cut out which is only available to special order. This should be wired to the contactor coil or heater controller as with the manual reset type, however, we strongly recommend that the circuit should include a warning lamp to alert a fault condition. This type of cut Out will reset at approximately 10°C below the trip point. If a fault condition is indicated it should be immediately investigated as with the manual version.

FAN OFF DELAY TIMER
All fans supplying electric heaters must be wired to an off delay timer of at least 2 minutes to dissipate the residual heat present when the system is shut off. Failure to do this can lead to nuisance tripping of the thermal cut out and possible damage to the filters, insulation and wiring. Higher output heaters may require off delay times of longer duration to allow for heat dissipation. If in doubt please contact Roof Units Viking Customer Services Department or Technical Services.
VIKING SERIES 90
Operating & Maintenance Instructions

COOLING COILS

DIRECT EXPANSION (DX) TYPE FOR HORIZONTAL AIRFLOW - Dia. C
Direct expansion coils fitted to Viking Series 90 air handling units are supplied with their connections sealed and are charged with nitrogen to prevent the ingress of moisture or contaminants. Unless otherwise specified they are supplied in single stage form. Installation of direct expansion coils must be carried out by qualified refrigeration engineers in accordance with the relevant codes of practice.

CHILLED WATER TYPE FOR HORIZONTAL AIRFLOW - Dia. D
The water supply should be connected so that entering air meets leaving water. When the coil is filled for the first time it must be thoroughly vented to ensure that all the air has been displaced.

CONDENSATION & DRAINAGE (BOTH TYPES OF COIL)
As a normal part of the cooling process condensation will form on the coil fins. Viking Series 90 air handling units are provided with a drain tray underneath the fin block to collect the condensation. A drain connection is provided on the side of the unit casing, which must be connected to a suitable water trap to prevent air being drawn back into the unit and inhibiting the outward flow of condensate.

The following guide can be used to estimate the minimum height of trap required: Minimum Height = 13mm + 10mm per 100Pa of pressure differential.

Viking Series 90 air handling units are designed so that the face velocity on cooling coils does not exceed 2.5m/sec at the design duty unless droplet eliminators are fitted in which case velocities of up to 3.5 or 4.0 m/sec are permissible. These limitations reduce the risk of condensation being drawn off the fins and being deposited inside the air handling unit.

CLEANING (BOTH TYPES OF COIL)
Fin Block
Any deposits or dirt on the fins will impair the efficiency of the cooling coil. Cleaning should be carried out by vacuum cleaning or careful blowing with compressed air in a direction parallel to the fins. If the dust is greasy use a cold degreasing agent suitable for aluminium fins.

Drain Tray
In the interest of hygiene it is important that the drain tray should be kept clean. Regular cleaning with a suitable detergent or disinfectant is recommended.
VIKING SERIES 90
Operating & Maintenance Instructions

DIRECT DRIVE FANS

GENERAL
Minislim, Slimline and Mini sizes D1 to D6 are fitted with direct drive centrifugal fans with sealed for life ball bearings. All of the fans are suitable for operation from -25°C to +40°C and in relative humidity up to 95%.

SUPPLY
The site supply must be checked to ensure that voltage, frequency, number of phases and power rating comply with the Viking Series 90 air handling unit.

ELECTRICAL CONNECTION TO MOTORS
All motors are pre-wired to an external terminal box on the side of the unit.

DIRECTION OF ROTATION
The installer must check for correct rotation. Note that if the direction of rotation is incorrect the airflow will still be in the correct direction but at a reduced rate. Three phase fans require a trial connection. To reverse direction interchange any two supply leads. Single phase fans are dispatched with connections made.

PROTECTION
Fuses in the circuit should be regarded as only protecting the wiring against short circuits or earth faults; they are not suitable for overload protection. Fuse ratings must be able to carry starting loads, which can be taken as a maximum of six times the running current for 25 seconds. Motor rated fuses must be used. N.B. when using speed controls with transformers higher surge currents may occur on start up. N.B. Motors above 0.37KW must be provided with overload protection.

EARTHING
All fans must be earthed in accordance with the requirements of your supply authority or relevant code of practice. The earth conductor must be of adequate rating to conduct the maximum fault current.

ISOLATOR SWITCHES
We recommend that all units should have a local isolator fitted adjacent to the unit.

MAINTENANCE
The only maintenance normally required for these direct drive fans is periodic inspection to check security of fastenings and cleaning of the fan impeller should it become soiled.

NOTES:
1. Always isolate the fan from the mains supply before carrying out any work.
2. It is the responsibility of the installer and user to ensure that the installation complies with local regulations and codes of practice (in the U.K. the Health & Safety at Work Act 1974 Section 2.1 and 6.3).
VIKING SERIES 90
Operating & Maintenance Instructions

DIRECT DRIVE FANS (cont...)

WIRING DIAGRAMS FOR ALL SINGLE PHASE UNITS

With STE starter

* Link Provided by others

With conventional D.O.L. starter or SPM controller and D.O.L. starter

With RTRE controller

WIRING DIAGRAMS FOR ALL THREE PHASE UNITS
BELT DRIVEN FANS

GENERAL
Mini air handling units from size B2 upward are fitted with double inlet centrifugal fans indirectly driven by T.E.F.V. motors.
Standard fans and motors are designed to operate from -25°C to +40°C and in relative humidity of up to 95%.

UNITS B3 TO B6
The fan and motor assembly on these sizes is fitted with a slide rail system which enables the entire assembly to be partly withdrawn from the air handling unit to improve access. The following procedure should be followed:

1. Remove mullions where necessary.
2. Unbolt the discharge flexible connector.
3. Remove the restraining strap.

The fan assembly can now be drawn outwards.

ELECTRICAL CONNECTIONS TO MOTORS
Electrical connections are to be made to the motor mounted terminal box inside the fan section of the air handling unit. Remember to leave sufficient slack in the connecting cable to allow the fan assembly of sizes B3 to B6 to be withdrawn, also ensure that cables do not foul the fan, motor, drive or slide rail system and are kept clear of other functional sections within the unit particularly electric heaters.

SUPPLY
The site supply must be checked to ensure that voltage, frequency, number of phases and power rating comply with the Viking Series 90 air handling unit.

DIRECTION OF ROTATION
The installer must check for correct rotation. Note that if the direction of rotation is incorrect the airflow will still be in the correct direction but at a reduced rate. Three phase fans require a trial connection. To reverse direction interchange any two supply leads. Single phase fans are dispatched with connections made, but correct rotation should always be confirmed on site.

PROTECTION
Fuses in the circuit should be regarded as only protecting the wiring against short circuits or earth faults; they are not suitable for overload protection. Fuse ratings must be able to carry starting loads, which can be taken as a maximum of six times the running current for 25 seconds. Motor rated fuses must be used.
N.B. Motors above 0.37KW must be provided with overload protection.

EARTHING
All fans must be earthed in accordance with the requirements of your supply authority or relevant code of practice. The earth conductor must be of adequate rating to conduct the maximum fault current.

ISOLATOR SWITCHES
We recommend that all units should have a local isolator fitted adjacent to the unit.

NOTES:
1. Always isolate the fan from the mains supply before carrying out any work.
2. It is the responsibility of the installer and user to ensure that the installation complies with local regulations and codes of practice ((In the U.K. the Health & Safety at Work Act 1974 Section 2.1 and 6.3).
VIKING SERIES 90
Operating & Maintenance Instructions

BELT DRIVEN FANS (cont...)

WIRING DIAGRAM FOR STANDARD SINGLE PHASE MOTORS
The following diagrams give wiring details for the standard Brook Crompton Parkinson 240v/50Hz/1Ph 4-pole motor. If your motor is not one of these or you have any doubts at all about wiring please contact our Viking Customer Services Department on 01384 418681. Correct fan rotation must be confirmed on site and details for reversing the motor are given below should this prove necessary.

N.B. If the direction of rotation of the fan is incorrect the airflow will still be in the correct direction but at a reduced rate.

* LIVE AND NEUTRAL SUPPLY CAN BE CONNECTED EITHER WAY ROUND TO U1 AND U2.

EARTH TERMINAL ON TERMINAL BOX CASING

TO REVERSE ROTATION

* LIVE AND NEUTRAL SUPPLY CAN BE CONNECTED EITHER WAY ROUND TO U1 AND U2.
WIRING DIAGRAM FOR STANDARD THREE PHASE MOTORS

The following diagrams give wiring details for the standard Brook Crompton Parkinson 415v/50Hz/3Ph 4-pole motor. If your motor is not one of these or you have any doubts at all about wiring please contact our Viking Customer Services Department on 0384 79732. Three phase motors require a trial connection to establish correct rotation of the fan. To reverse the direction of rotation change over any 2 supply leads.

N.B. If the direction of rotation of the fan is incorrect the airflow will still be in the correct direction but at a reduced rate.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Type</th>
<th>Wired</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18kw</td>
<td>3 Wire</td>
<td>Internal Star</td>
</tr>
<tr>
<td>0.25kw</td>
<td>3 Wire</td>
<td>Internal Star</td>
</tr>
<tr>
<td>0.37kw</td>
<td>Delta Star</td>
<td>Star Dia. 1</td>
</tr>
<tr>
<td>0.55kw</td>
<td>Delta Star</td>
<td>Star Dia. 3Y</td>
</tr>
<tr>
<td>0.75kw</td>
<td>Delta Star</td>
<td>Star Dia. 3Y</td>
</tr>
<tr>
<td>1.10kw</td>
<td>Delta Star</td>
<td>Star Dia. 3Y</td>
</tr>
<tr>
<td>1.50kw</td>
<td>Delta Star</td>
<td>Star Dia. 3Y</td>
</tr>
<tr>
<td>2.20kw</td>
<td>3 Wire</td>
<td>Internal Star</td>
</tr>
<tr>
<td>3.00kw</td>
<td>3 Wire</td>
<td>Internal Star</td>
</tr>
<tr>
<td>4.00kw</td>
<td>Star Delta</td>
<td>Star Dia. 3</td>
</tr>
</tbody>
</table>

All motors over 4.0kW are Star Delta (Dia. 3) and can be wired direct on Delta (Dia. 3D) providing the system can handle the starting current.

Diagram 1:

No1 Internal Star (Y)

```
    U
   /\  
  /   
  V   W
```

Diagram 2:

No3 Star-Delta (Y-Δ) Starting

Connect all 6 leads to Star-Delta Starter

No3D Direct-On Delta (Δ)

- Link W2 to U1
- U2 to V1
- V2 to W1

Supply to U1, V1, W1

No3Y Direct-On Star (Y)

- Link W2 to U2 to V2

Supply to U1, V1, W1

Diagram 3:

```
   U1
   |   
   |   
   |   
   |   
   V1
   |   
   |   
   |   
   |   
   W1
   |   
   |   
   |   
   |   
   W2
   |   
   |   
   |   
   |   
   V2
   |   
   |   
   |   
   |   
   U2
```

6 Leads For Star (Y) or Delta (Δ)
INSPECTION & CLEANING
The fan should be periodically inspected and cleaned. It is particularly important to keep the impeller clean in order to avoid imbalance and vibration, which can in time cause serious bearing damage.

BELT TENSION & ALIGNMENT
The belt tension and alignment should be checked:

a. When fitting new belts, installing a new fan or just prior to starting the fan for the first time.
b. After the first 30 minutes of operation.
c. At least every six months

BELT ALIGNMENT
Ensure that the pulleys are correctly aligned before checking the belt tension and after any adjustments.

METHOD FOR CHECKING BELT TENSION
Using a belt tension indicator, with metric calibrations:
1. Multiply the centre distance (in meters) by 16 this gives the deflection distance in mm.
2. Set the lower marking ring to the deflection distance required in mm on the lower scale.
3. Set the upper marker ring against the bottom edge of the top tube.
4. Place the tension indicator on top of the belt at the centre of span and apply a force at right angles to the belt deflecting it to the point where the lower marker ring is level with the top edge of the adjacent belt (For single belt drives a straight edge should be placed across the two pulleys to act as a datum for measuring the deflection).
5. Read off the force value indicated by the top edge of the upper marking ring.
6. Compare this value to the kgf value shown in the table below.

<table>
<thead>
<tr>
<th>Belt Section</th>
<th>Force required to deflect belt 16mm per metre of span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small Pulley Dia. mm</td>
</tr>
<tr>
<td>SPZ</td>
<td></td>
</tr>
<tr>
<td>67 to 95</td>
<td>10 to 15</td>
</tr>
<tr>
<td>100 to 140</td>
<td>15 to 20</td>
</tr>
<tr>
<td>SPA</td>
<td></td>
</tr>
<tr>
<td>100 to 132</td>
<td>20 to 27</td>
</tr>
<tr>
<td>140 to 200</td>
<td>28 to 35</td>
</tr>
<tr>
<td>SPB</td>
<td></td>
</tr>
<tr>
<td>160 to 224</td>
<td>35 to 50</td>
</tr>
<tr>
<td>236 to 315</td>
<td>50 to 65</td>
</tr>
<tr>
<td>SPC</td>
<td></td>
</tr>
<tr>
<td>224 to 355</td>
<td>60 to 90</td>
</tr>
<tr>
<td>375 to 560</td>
<td>90 to 120</td>
</tr>
<tr>
<td>DELTA</td>
<td></td>
</tr>
<tr>
<td>335 & above</td>
<td>150 to 200</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>56 to 100</td>
<td>5 to 7.5</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>80 to 140</td>
<td>10 to 15</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>125 to 200</td>
<td>20 to 30</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>200 to 400</td>
<td>40 to 60</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>355 to 600</td>
<td>70 to 105</td>
</tr>
</tbody>
</table>

If measured force falls within the values shown then the drive should be satisfactory. A measured force below the lower value indicates under-tensioning.

ADJUSTMENT
The belt tension can be adjusted by displacing the motor. After any adjustment re-check belt alignment
REPLACEMENT OF DRIVE COMPONENTS
BELTS
The drive belts should be replaced periodically as they become worn.

Method: First move the motor toward the fan by a sufficient amount to allow the belts to be removed from the pulleys. All the belts in a drive should be replaced simultaneously. Ensure that the replacement belts are all matched (i.e. are exactly the same length). The new belts should be re-tensioned and aligned as per previous instructions and checked at the intervals shown.

PULLEYS
Viking Series 90 belt drive air handling units supplied by Roof Units Group are normally fitted with taper lock pulleys and bushes.

REMOVAL
Remove the grub screws and oil them lightly. Screw one of them into the extractor hole (on larger bushes two extractor holes are provided in which case two grub screws should be used). Tighten the screw (or screws) until the bush is released from the hub of the pulley and the bush is released from the shaft. Pull the bush and pulley from the shaft as one unit.

FITTING
Clean the bore of the pulley and the bush to ensure that all surfaces are free of grease and dirt. Fit the bush into the pulley. Oil the grub screws lightly and screw them by hand into the tapped holes between the pulley and bush. Clean the fan shaft and fit the bush and pulley as one unit. Tighten the grub screws alternately whilst checking that the pulleys are in line until all of the screws are securely tightened.

Fit the belt(s) retention and re-check the alignment of the drive as previously described.
G U A R A N T E E

We guarantee that should any defect in workmanship or material occur on this product within twelve months from date of delivery we will repair or replace the defective product free of charge of labour and material on condition that:

1. The product is returned to our premises carriage paid.
2. On its return to our premises it is shown to our satisfaction to be defective in material or workmanship.

3. The correct electrical supply specified only has been utilised, that the product has not been overloaded and has been installed in accordance with the wiring and installation instructions provided.

4. Access to the installation and wiring be granted to the company or its authorised representative if so required.

We do not guarantee the suitability of fans for specific uses or particular applications and emphasise that selection of the correct product for the particular circumstances is the buyers responsibility. The company does not accept any liability other than repair or replacement or credit for the original cost to the buyer of the goods and any consequential loss suffered by the buyer or any third party is specifically excluded.