Sentinel D-Box
Single
In-line Duct Fan Range

Stock Ref.No
SENT100S SENT400S
SENT100S/CP SENT400S/CP
SENT125S SENT500S
SENT125S/CP SENT500S/CP
SENT150S
SENT150S/CP
SENT150S
SENT150S
SENT200S
SENT200S/CP
SENT250S
SENT250S/CP
SENT315S
SENT315S/CP

READ IN CONJUNCTION WITH ILLUSTRATIONS
PLEASE SAVE THESE INSTRUCTIONS
INDEX

1. General Description Page 3
2. Sizes and Weights Page 4
3. Controls and Accessories Page 5
4. Controller Description Page 6
5. Control Options Page 7
 a) Factory Default Setting
 b) Max. Fan Speed
 c) Min. Fan Speed
 d) Master Enable
 e) Fan Failure
 f) Damper
 g) Telemetry
 h) Electric heater Interlock
6. Unit Operation Page 8
 a) MIN-MAX Mode
 b) Constant Pressure Mode
 c) Proportional Control Mode
 d) Local/Remote Control Mode
 e) Network Master/Slave Mode
7. Installation Page 11
 a) Location
 b) Safety
 c) General
 d) Mounting Arrangements
 e) Alternative Mounting for CP Units
 f) Intake Pressure Conversion
 g) Weatherproof Units
8. Controller Electrical Connections Page 13
 a) Mains Supply
 b) Switch Connections
 c) Master Enable Connection
 d) Sensor Connections
 e) Remote/Local Enable
 f) Visual Display Indicator
 g) Network
 h) Shut-off Damper
 i) Heater Interlock
9. Other Electrical Connections Page 19
 a) Min-Max Damper Options
 b) Proportional Damper Options
 c) PIR Grille
10. Commissioning Page 21
 a) Balancing the System
 b) MIN-MAX
 c) Proportional Control
 d) Remote/Local Control
 e) Slave Mode
 f) Constant Pressure
11. Status Messages Page 28
12. Spares Page 29

IMPORTANT

PLEASE READ THESE INSTRUCTIONS CAREFULLY BEFORE COMMENCING INSTALLATION AND LEAVE THEM WITH THE END USER.

1. THESE UNITS MUST BE SITED AND CONNECTED IN ACCORDANCE WITH CURRENT IEE REGULATIONS, BS7671 (UK) OR THE APPROPRIATE STANDARDS IN YOUR COUNTRY.

2. INSTALLATION SHOULD BE BY A QUALIFIED ELECTRICIAN AND INSTALLER.

3. ALL REGULATIONS AND REQUIREMENTS MUST BE STRICTLY FOLLOWED TO PREVENT HAZARDS TO LIFE AND PROPERTY, BOTH DURING AND AFTER INSTALLATION, AND DURING ANY SUBSEQUENT SERVICING AND MAINTENANCE.
4. THESE UNITS MUST BE EARTHED.

5. SITE AWAY FROM DIRECT SOURCES OF HEAT, AMBIENT TEMPERATURE RANGE - 10 TO 40ºC.

6. WHEN INSTALLING UNIT, TAKE CARE NOT TO DAMAGE ELECTRICAL OR OTHER HIDDEN UTILITIES.

7. CHECK THE DETAILS ON THE RATING LABEL FOR CORRECT VOLTAGE AND ELECTRICAL RATING.

9. DUE TO THE WEIGHT OF SOME UNITS, IT IS RECOMMENDED THAT 2 PERSONS ARE INVOLVED IN THE INSTALLATION. AT ALL TIMES, INSTALLATION PRACTICES MUST COMPLY WITH RELEVANT HEALTH AND SAFETY LEGISLATION.

10. SENTINEL AIR HANDLING UNITS ARE DESIGNED AND SPECIFIED FOR USE WITH VENT-AXIA CONTROLS, DAMPERS, GRILLES AND ACCESSORIES.

11. THESE UNITS ARE SUITABLE FOR OUTDOOR INSTALLATION WHEN THE SUPPLIED CONTROLLER COVER IS FITTED.

12. ENSURE THAT THE UNIT IS INSTALLED FLAT AND LEVEL IN ALL PLANES PRIOR TO OPERATION.

1. **General Description:**

The Sentinel system is designed to offer a controllable demand ventilation system in public, commercial and residential buildings through the use of low energy fan motors and intelligent sensors. Part L of the Building Regulations actively encourages the use of speed control in fans. The Sentinel Air Handling Units react automatically to changes in demand by matching the airflow requirement. This saves energy and ensures optimum performance at minimum running cost.

This eco-friendly system is based on the use of highly efficient brushless dc fan motors, allowing improved control functionality over and above equivalent ac units. A controller unit allows for control interfacing between the system user, the fan(s), switches, sensors and dampers. The control unit is universal and allows several different fan system configurations.

The Sentinel is typically an air extract unit, controlling and maintaining indoor air quality. However, an extract unit may also be used with another Sentinel unit running on intake in a master-slave control situation. Other such combinations allow the use of a heater battery in the air intake or a heat recovery unit.

There are 2 basic types of Sentinel unit available, constant pressure system and a hierarchical system, both being suitable for outdoor (roof mounted) installation. With constant pressure, the fan speed responds to maintain a constant fan inlet negative pressure as a result of downstream duct resistance variations. With the hierarchy system, the fan speed can either change MIN (trickle) to MAX (boost)
(or off to MIN) as a result of a simple switched input (time, thermostat, % relative humidity level, etc.) or fan speed can change proportionately as a result of carbon dioxide, temperature or humidity sensor measurement, either within the duct airflow or within a special environment. Most sensors and switches are 24V dc SELV.

With a hierarchy system, several control modes are possible, as follows:

- MIN-MAX mode
- Local/Remote mode (inc BMS operation)
- Proportional Control mode
- Slave mode

2 Sizes and Weights:

<table>
<thead>
<tr>
<th>Duct Diameter C mm</th>
<th>Standard Hierarchy Model</th>
<th>Standard Constant Pressure Model</th>
<th>Dimensions in mm (α)</th>
<th>Weight Kg</th>
<th>FLC Amps</th>
<th>Rating kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100S</td>
<td>100S/CP</td>
<td>a 380 b 443 c 275 d 400 e 192 f 306 g</td>
<td>8.5</td>
<td>0.72</td>
<td>0.10</td>
</tr>
<tr>
<td>125</td>
<td>125S</td>
<td>125S/CP</td>
<td>a 380 b 443 c 275 d 400 e 192 f 306 g</td>
<td>8.5</td>
<td>0.72</td>
<td>0.10</td>
</tr>
<tr>
<td>150</td>
<td>150S</td>
<td>150S/CP</td>
<td>a 380 b 443 c 275 d 400 e 192 f 306 g</td>
<td>8.5</td>
<td>0.74</td>
<td>0.10</td>
</tr>
<tr>
<td>200</td>
<td>200S</td>
<td>200S/CP</td>
<td>a 435 b 531 c 330 d 453 e 287 f 360 g</td>
<td>12.5</td>
<td>0.72</td>
<td>0.20</td>
</tr>
<tr>
<td>250</td>
<td>250S</td>
<td>250S/CP</td>
<td>a 435 b 531 c 330 d 453 e 287 f 360 g</td>
<td>13</td>
<td>1.38</td>
<td>0.20</td>
</tr>
<tr>
<td>315</td>
<td>315S</td>
<td>315S/CP</td>
<td>a 710 b 808 c 540 d 661 e 458 f 568 g</td>
<td>34</td>
<td>1.36</td>
<td>0.20</td>
</tr>
<tr>
<td>400</td>
<td>400S</td>
<td>400S/CP</td>
<td>a 710 b 808 c 540 d 661 e 458 f 568 g</td>
<td>36</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>500</td>
<td>500S</td>
<td>500S/CP</td>
<td>a 898 b 996 c 735 d 858 e 577 f 765 g</td>
<td>55</td>
<td>2.10</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(α) Sizes do not include fixing brackets
3. Sentinel Controls and Accessories:

<table>
<thead>
<tr>
<th>Control Type</th>
<th>Vent-Axia Part No.</th>
<th>Operation</th>
</tr>
</thead>
</table>
| 1 Air Quality Sensor (AQS) | Switch 432953 | • Measures VOC level (adjustable)
• Run-on timer adjustable 1-25 min |
| 2 PIR | Switch 433162 | • Person detection
• Adjustable run-on timer 5-25min. |
| 3 Humidity Switch | Switch 432949 | • Humidity sensing level adjustable 65-90% |
| 4 Ambient Response Humidistat | Switch 432945 | • Fixed humidity sensing at 72/75% RH
• Incorporates night setback |
| 5 Timeswitch | Switch 563515 | • 7/24 mechanical type
• max 6 cycles/day |
| 6 Thermostat | Switch 563502B | • Adjustable 6-30ºC |
| 7 Trickle-Boost Switch | Switch 455213 | • Single Gang Switch |
| 8 Remote Speed Control | Proportional 426332 | • Manual fan motor speed control (24Vdc) |
| 9 Carbon Dioxide & Temperature Room Sensor | Proportional 433257 | • Control levels settable up to 2000ppm CO₂ & 50ºC
• 24Vdc
• Temperature output not suitable for use with proportional duct damper |
| 10 Carbon Dioxide Duct Probe | Proportional 433259 | • Control level settable up to 2000ppm CO₂
• 24Vdc |
| 11 15-25ºC Room temperature Sensor | Proportional 434749 | • Use only with proportional dampers, DVDxxx/PC series |
| 12 Remote Fan Status Indicator | Visual Display 433816 | • Indicates fan running condition OK. Will flag fan failure. |
| 13 Power Supply | 24V dc 433193 | • 24W max output |
| 14 Damper Assembly | MIN-MAX Positioning DVD100/MM to DVD315/MM | • Sizes 100mm to 315mm
• 24V dc actuator |
| 15 Damper Assembly | Proportional 0-10V DVD100/PC to DVD315/PC | • Sizes 100mm to 315mm
• 24V dc actuator |
| 16 PIR Grille Kit | PIR/Humidity controlled damper 434184 | • 125mm size ducting
• 12V ac transformer supplied with kit
• Mechanical Humidity control included |

4. Controller Description:

The enclosure is fitted with a 4-pole 10A isolator that is suitable for fitting a locking device to prevent accidental operation. Electrical connections to external sensors, instruments, slave bus and fan motor power and control are via pinch connection terminal blocks. Segregation (by board layout) is provided to separate power and control areas of the board and also to prevent unnecessary user access to factory terminations. The user interface consists of a 16-character backlit alphanumeric x 2 line display with 4 push button controls (Parameter, Increment, Decrement and Enter).

The unit accepts single phase (L/N/E) and three phase plus neutral (L1/L2/L3/N/E) mains supply power feeds dependant on model, ie., 230V +/- 10% / 50/60Hz / 1ph (AC)
400V +/- 10% / 50/60Hz / 3ph (AC), (4 wire systems only)
A 24V nominal (18-30V) supply at 145mA max is provided for powering switches and sensors etc. Analogue signal returns must be 0-10V dc with common ground for the instrument and cable screen at the control board.

Provision of cable input is via 3-off M16 cable gland apertures (marked CONTROL) and 2-off M20 gland apertures (marked POWER). 1-off each cable gland size are provided loose in the control box.

Cable Screens: Cable screens can be earthed if required by connecting to pins 8, 9 & 10.
Spare Terminals: Pins 82, 83 & 84 are spare terminals connected together.
Fig. 1 shows the controller connections layout in the control box:-

![Controller Connections Layout](image)

Fig.1 Controller Connections Layout

5. **Control Options:**

The controller unit can receive signals from a BMS and various sensors and switches which determine the operation of the Sentinel unit and its commissioning. Alternatively, in constant pressure mode, switches and sensors may be connected directly to branch dampers or the PIR Grille can be used.

Sentinel units are factory built either with or without a pressure sensor and are configured as such with appropriate factory default settings. Subsequently, during site installation commissioning, the operational control mode is matched to the range and type of the control sensors and switches. As the microprocessor control has a non-volatile memory, it will always remember the selected control settings prior to any shutdown occurring.
(a) **Factory Default Settings:**

- Minimum speed = 20%
- Maximum speed = 80%
- Damper operate time = 180s
- Heater run-on time = 60s
- Pressure set point 150Pa
- Sensor range 12 to 500Pa
- Temperature set point 22ºC
- Temperature proportional band 10ºC
- CO₂ Set point 1000ppm
- CO₂ Proportional band 1000ppm
- Humidity set point 70% RH
- Humidity proportional band 40% RH

(b) **Max. Fan Speed:**
Settable via the user interface up to 100%. Sets the maximum speed the fan will operate at under all control methods. Where external (0-10V) analogue sensors or speed references are connected, the fan will operate at the maximum fan speed corresponding to the sensor output.

(c) **Min. Fan Speed:**
Settable via the user interface. Sets the minimum speed the fan will operate at under all control methods. Can be set to zero speed if so required. A non-zero speed setting may also be referred to as a trickle speed. A minimum run speed between 0-20% is not permitted nor is a min. speed > max. speed.

(d) **Master Enable:**
For all operating modes, the “Master Enable” acts as an on/off control for the fan. As factory supplied, there is a link between pins 61 and 62 which permanently enables the fan at MIN speed when powered. Alternatively, this link can be replaced by an on-off control (zero-volt contacts) such as a timeclock, PIR, etc., to control the system availability.

(e) **Damper:**
Damper connections in the controller are based upon the use of the industry standard damper actuator (typically Belimo LM24A) using a 24V open signal and a 24V dc close signal (interlocked). No end of travel return is required. For the damper actuators, power is derived from a 24V dc power source (433193).

On the fan start command occurring, the damper open will initiate and the fan will start after the damper delay. Once the fan stops, the damper close command will initiate. In constant pressure operation, no damper control is available via the control unit. In such a case, all damper controls are provided locally by sensor or switch control.

(f) **Telemetry:**
Telemetry signals are available to indicate fan running/fan fail status of each fan unit. These signals are volt free contacts via circuit board mounted relays for connection to the visual display unit. In addition, indication is always available via the LCD to indicate fan status. Fan fail is initiated when the analogue control voltage to the motor is active but there is no feedback from the tachometer or motor fault relay. This will signal a Fan Failure for the following conditions:
- Motor failure
- Circuit board failure
- Open circuit failures of interconnecting wiring
Duct Heater Interlock:
When using Sentinel on intake the controller provides a remote on-off function for Vent-Axia Airtrak Duct Heaters with built-in thyristor control. Whilst the fan is running, the heater will be active depending on the temperature set point and the duct thermostat feedback requirement. When the fan is switched off, there is a defined run-on period before the fan stops in order to cool the heating element. The fan run-on period takes priority over damper closing when the fan is switched off via the master enable.

6. Unit Operation:

The flexible control functionality built into the Sentinel product allows its use in various air movement control configurations which are referred to as operation modes. These are summarized below, with reference to basic system architecture illustrations. However, because the Sentinel product has been designed with the specifier in mind, there will be numerous additional control possibilities achievable in practice.

(a) MIN-MAX Mode (MM):
This is nominally the default factory set-up mode if no pressure sensor is fitted. In this mode, the fan will normally run at the minimum set speed. If any of the Timer, AQS, PIR, etc. inputs are enabled, the fan will run at the maximum set speed. This operational mode is illustrated in Fig 2. Additionally, a switching device may be used as an optional enable.

(b) Constant Pressure Mode (CP):
In this case, the Sentinel unit will monitor the system pressure and increase or decrease the fan speed to match the measured pressure to the set point pressure, i.e. Demand Controlled Ventilation. As the measured pressure changes due to system changes downstream, i.e. ventilators and dampers open and close, so the fan speed changes to compensate. Fan speed control uses a PID algorithm to achieve fast response and minimum overshoot control loop.
Three levels of PID sensitivity are available, low, medium and high, to cover all applications. The default is medium. The default pressure setting is 150Pa but can be set up to 480Pa. The CP operational mode is illustrated in Fig.3 for various types of grille and damper control. As with other operation modes, a switching device may be used as an optional enable.

Fig.3: **CONSTANT PRESSURE MODE**

(c) **Proportional Control Mode (PC):**
In this operational mode, sensors are used with an analogue 0-10V output to monitor the Indoor Air Quality such that the fan speed response is a proportional demand of the maximum set speed. This control mode is automatically sensed during commissioning. The default sensor set point and the proportional control range (P band) are held in software as follows:

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Set Point</th>
<th>P-Band</th>
<th>0-10V Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide</td>
<td>1000ppm</td>
<td>1000ppm</td>
<td>0-2000ppm</td>
</tr>
<tr>
<td>Humidity</td>
<td>70% RH</td>
<td>40% RH</td>
<td>0-100% RH</td>
</tr>
<tr>
<td>Temperature</td>
<td>22°C</td>
<td>5°C</td>
<td>0-50°C</td>
</tr>
</tbody>
</table>

The P-band range is equally distributed about the set point. The set point, P-Band, min. speed and max. speed are all user settable if required. The P-band range is essentially the min. to max. set speed of the fan, assuming that neither the min. or max. speed settings are within the P-band range, in which case the fan speeds are truncated at those settings. Referring to the Figure below, this shows the nominal default relationships:-
If, for example, the fan speeds are 20% and 100% (Note: Factory defaults are 20% and 80%), and the P-band range is equivalent to, say, X and Y, then point X becomes the 20% fan speed and point Y becomes 100%. It can be seen that if the P-band is set too narrowly, the fan speed response becomes coarse.

The proportional mode system set-up illustrations are shown in Fig.4. The carbon dioxide sensor can either be room mounted or duct mounted. If all 3 types of sensor are installed, the one with the highest sensor value takes priority. Each sensor input is monitored and controlled independently. As with other operating modes, a switching device may be used as an optional enable

Fig.4: PROPORTIONAL CONTROL MODE

A) WALL MOUNTED SENSORS

- 24V dc POWER SUPPLY
- CARBON DIOXIDE
- TEMPERATURE
- CONTROL UNIT
- SENTINEL UNIT
- OPTIONAL ENABLE (REMOVE LINK 61-62)
- THERMOSTAT or TIMESWITCH or PIR or BMS
- VARIABLE SPEED RESPONSE

B) MIXED SENSOR LOCATION

- 24V dc POWER SUPPLY
- TEMPERATURE
- CARBON DIOXIDE
- DUCT SENSOR
- DUCT INTAKE
- CONTROL UNIT
- SENTINEL UNIT
- OPTIONAL ENABLE (REMOVE LINK 61-62)
- THERMOSTAT or TIMESWITCH or PIR or BMS
- VARIABLE SPEED RESPONSE
Remote/Local proportional Control:
In this mode, the controller allows the input of a 0-10V input either from a remote (manual) speed control or from a Building Management System (BMS). Although the 0-10V input range is matched against the 20%-100% default speed setting condition, max. and min. speeds are installer adjustable if necessary, in which case, any voltage input below the new min. setting or above the new max. setting will retain the min.-max. values. This operational mode is illustrated in Fig.5. A switching device may be used as an optional enable.

Fig.5: LOCAL/REMOTE CONTROL MODE

Network Master/Slave Mode:
By default, every Sentinel unit is a “Master”. However, “Slave” unit(s) can be added to the master unit to produce a balanced air intake/extract system. The Master can be either intake or extract. The master unit would be configured in any of the above modes with the slave connected and simply set to run at the same speed as the master multiplied by a “slave gain” factor between 0.5 and 2.0.

7. Installation:

(a) Location:
The unit must be stored in clean, dry conditions. DO NOT install these fans in areas where the following may be present:

1. Excessive oil or grease laden atmosphere.
2. Corrosive or flammable gases, fluids or vapours.
3. Ambient temperatures higher that 40ºC and below -10ºC.
4. Relative humidity above 95%
5. Possible obstructions which will hinder removal.
6. Sudden ductwork transformations close to the unit.

If the unit is to be stored for a long period of time the fan impeller must be rotated by hand at monthly intervals to prevent hardening of the lubricant and corrosion or static indentation of the bearings.
It is recommended that before installation, the resistance to earth should be measured and if found to be less than 2MΩ the motor should be dried out before applying mains voltage.
(b) **Safety:**

All air moving equipment may present electrical, mechanical or noise hazards either during installation or during operation. These instructions are meant to help in the prevention and/or minimization of these hazards. It is important that due consideration is given to the implementation of these instructions and to due attention being given to applicable statutory requirements. Potential hazards from rotating parts that can be reached during operation must be eliminated by using appropriate guards meeting statutory requirements.

(c) **General:**

All fans generate noise during operation. Dependant on the installation sound attenuators or other acoustic treatment may be necessary to achieve acceptable noise levels in the ventilation area or the area surrounding the fan installation. The product catalogues indicate the noise levels generated by the equipment in standard test situations. The installed condition may affect the actual noise levels experienced in operation. When fitting clamping bands to flexible connectors, ensure that the flexible connectors are pulled tight and the ducts are not misaligned.

(d) **Mounting Arrangements:**

- As factory supplied, all constant pressure units MUST be installed in a horizontal position, either on a loft floor or inverted from the roof slab. Provided that the roof or ceiling is horizontally flat, a fixing bracket is provided with 100mm to 315mm fan units.
- If the fixing bracket is used, firstly bolt the bracket to the roof or ceiling. Latch the Sentinel into the 2 bracket slots, as shown in Fig.6, then rotate and secure with 2 further bolts. Tighten all bolts.
- If the fixing bracket cannot be used, 4 x Ø10mm clearance holes are provided for roof hanger rods, see Section 2 for location dimensions.
- With the larger 400mm and 500mm fan sizes, parallel fixing brackets are provided on both sides of the unit, Fig 7, and because of the additional weight of these sizes, extra fixing holes are provided for additional hanger rods.
- Hierarchal fan units may be installed in any orientation provided suitable fixing means are provided by the installer.
(e) **Alternative Mounting for Constant Pressure Units:**

If the installation requires a constant pressure unit to be mounted in a vertical orientation, this is possible using the modification kit 434781 which should be ordered separately. However, this conversion is only possible with 200, 250, 315, 400 and 500 size single units. Instructions are included with the kit.

(f) **Pressure Conversion for Intake Applications:**

As factory supplied, Sentinel Constant Pressure units are intended for use as extract systems. However, if Intake Constant Pressure usage is required, a pressure conversion kit is available, Part No. 434828 and this should be ordered separately. Instructions are included with the kit.

(g) **External Roof Mounting:**

Hierarchy and Constant Pressure models are suitable for external roof mounting. They MUST only be installed horizontally on the roof or other external horizontal surface. When installed outdoors, these units MUST NOT be used in any other orientation. Alternative mounting arrangements and kits do not apply to units mounted outdoors, either singles or twins. The supplied controller cover MUST be fitted when mounting outdoors.

8) **Controller Electrical Connections:**

a) **Mains Supply:**

Fan sizes 100mm to 400mm are single phase. The 500mm unit is 3-phase. Connection to the control box should be via a suitably sized round cable through the M20 cable gland provided. The gland must be sealed properly to maintain the IP rating of the unit. The wiring to the unit should be via a double pole isolating switch (single phase) or a TP&N switch (3-phase) adjacent to the unit or alternatively the connection taken back to the distribution board.

Note: If an RCD unit is used in the 3-phase supply line to the 500 unit, the RCD must be a high frequency tolerant type, e.g. Hager CDH440 or 463.

To connect the mains cable, remove the controller protective cover and then the controller front cover and connect the L/N/E or L1/L2/L3/N/E supply cable to the controller isolator terminals as identified on the isolator. The isolator will have been wired to the PCB by the factory. Connect Earth to J1 pin 4. See Fig 8a for single phase and Fig 8b for 3 phase. In the case of units mounted outdoors, you MUST ensure that the controller protective cover is replaced.
b) **Switch Connection (MIN-MAX Setting)**

These refer to connections 64 to 75 (J3) in Fig.1. In all cases except the timeswitch, the 24V dc switch supply voltage is derived from the PCB. The active 24V line is also used for the switch relay status. Connection diagrams are as follows:-

- Fig.9 - PIR;
- Fig.10 - Air Quality Sensor;
- Fig.11 - Ambient Response Humidistat;
- Fig.12 - Ecotronic Humidistat
- Fig.13 - Timeswitch (240V Supply);
- Fig.14 - Thermostat
c) **Master Enable Connection (OFF to MIN setting)**
As received, the Sentinel controller has a link installed between terminal connections 61 and 62 (J3) as standard. This means that the Sentinel fan will run at the MIN setting all the time that power is applied to the unit. Alternatively ONE switch can enable this connection once the 61-62 link is removed. The connection diagrams are as follows for the various options:-

- Fig. 15 - Ecotronic Humidistat
- Fig. 16 - PIR
- Fig. 17 - Timeswitch
- Fig. 18 - Thermostat

If available, a BMS enable signal can also be used between connections 61 and 62

![Connection Diagrams](image1)

d) **Sensor Connections (Proportional Control)**
These are specifically carbon dioxide, temperature and humidity. If more than one sensor is present, the one with the highest output takes priority. If no external signals are present when this mode is enabled, the running speed of the fan will be the minimum speed set point. Connection diagrams are as follows:-

- Fig. 19 - CO2 Duct Sensor
- Fig. 20 - CO2/Temperature/Humidity Sensing
e) **Remote/Proportional Control**

If there is a Building Management System monitoring Indoor Air Quality and Demand, this can be connected to pins 58-60 on J3 provided that the BMS input is analogue 0-10V dc. The connection pins are:

- 59 = 24V supply
- 58 = 0-10V BMS input
- 60 = 0V

This nominally provides for air extraction but can also control a balanced intake – extract system if suitably configured with a Sentinel slave unit.

A local speed control can alternatively be used if a manual fan control is required, Fig.21.

f) **Remote Display Indicator**

The remote display unit can either be wired directly into the Sentinel Controller, Fig.22 or wired in conjunction with the Sentinel Power Supply, Fig.23 if there are insufficient power connections or outlets available on the controller pcb. For normal running conditions the green light will show and in the case of a fan failure condition, the red light will show.
g) **Network**

The connections are as follows, using twisted pair cables:-

- Master pin 79 connect to Slave pin 79
- Master pin 78 connect to Slave pin 78
- Master pin 80 connect to Slave pin 80
- Master pin 81 connect to Slave pin 81

The Master can either be extract or intake. Up to 3 Slave units are possible with a single master, either Single Sentinel units or Twin Sentinel units, Fig. 24. The maximum allowable length of the twisted pair cable is 10m. Contact Vent-Axia Technical Support if longer cable lengths are required for an installation.

![Master-Slave Network Connections Diagram](image)

g) Shut-Off Duct Damper

For connection of an in-line damper directly to the controller, see Fig.25. (If a mains supply for the transformer is not readily available, it is possible to connect the L transformer input to Controller connector 14 and the N input to connector 18)

Though up to 10 dampers may be connected in parallel using the connection arrangement shown in Fig25, the dampers will all operate together at the same time. However, it is possible to have some dampers opening and some closing at the same time, dependant on the actuator setting, Fig.25
In order that the damper operates as indicated, the arrow on the top right hand corner of the actuator body must correspond to the clamp setting requirement on the damper shaft as shown in Fig.25.

h) **Heater Interlock**

Connecting the TIME/CLK connections on the Airtrack Duct Heater thyristor control PCB as in Fig.26., drives the heater “active” as long as the fan in the Sentinel unit is running. Note that whilst the heater can be connected to any unit, Master or Slave, the heater run-on timeout can only be set on the Master.
9) **Other Electrical Connections:**

a) **Damper Control (MIN-MAX)**

In Constant Pressure operating mode, it is possible to operate in-line dampers with switches, e.g. PIR, Humidistat, AQS etc., Fig 3B or alternatively with sensors, Fig.3C.

With switches, the damper operates from shut/MIN/trickle to open/MAX/boost positions using DVDxxxMM dampers, Fig.27a, b, c, & d.

![Diagram of Duct Damper Connection Circuit to PIR](image)

![Diagram of Duct Damper Connection Circuit to AQS](image)

![Diagram of Duct Damper Connection Circuit to Ambient Response Humidistat](image)

![Diagram of Duct Damper Connection Circuit to Thermostat](image)

b) **Damper Control (Proportional)**

With sensor control, either the in-duct carbon dioxide sensor, the remote control or the carbon dioxide/temperature sensor can be used to proportionally control a DVDxxxPC damper, Fig.28a, b & c. In order that the damper operates as indicated, the arrow on the top right hand corner of the actuator body must be positioned as shown in Fig.25.

In this situation, the sensor output directly controls the movement of the damper plate. In other words the 0-10V output range of the sensor nominally reflects the damper position between open and shut. However, in practice damper movement is only between 2-10V and the end stops on the actuator should be set accordingly. If the “close position” end-stop on the actuator is set for 20% open, ie trickle air flow, this then corresponds to 400ppm CO\(_2\), Fig.29a, or 17°C, Fig.29b, depending on the driving sensor.

The “open position” end stop can be also set but this time to provide a maximum open airflow position. In the illustrations below, an 80% open position is shown corresponding to a damper
stall position at 8V, position X. This then means that in the case of the CO₂ sensor, the set damper airflow position corresponds to 1600ppm, Fig 29a and in the case of the temperature sensor, the set damper airflow position corresponds to 23°C, Fig 29b. At maximum, the 10V damper position corresponds to 2000ppm CO₂ and 25°C respectively.
c) PIR Grille

The connection diagram for the PIR Grille is shown in Fig.29. It should be noted however that when the power is initially connected, the grille flap may open and stay open for up to 20 minutes until the PIR electronics stabilize. Once the PIR grille is activated in normal use, the grille will then stay open for 20 minutes regardless of whatever person traffic is observed in the meantime.

10) Commissioning:

From the factory, the stored operating modes will be either Constant Pressure or MIN-MAX. Following switch-on, the unit will display the “Commissioning?” message to which the installer has 10 secs. to reply “Y” in order to alter the factory defaults. If the user does not respond, the current stored parameters will remain and the unit will run in the current stored mode. If the user responds “Y”, the unit will perform self-diagnostics such that if a signal over a default threshold (P-Band) is detected the unit will go into Proportional control mode and similarly if a signal is detected at the Remote/Local input, the unit will go into that control mode. Otherwise the unit will stay in CP or MIN-MAX mode. Check rating label for product type; if CP go to (f)

Note that:-
- If the mode displayed to the user is not the required mode, it can be changed by turning off the unit, then re-entering the commissioning procedure.
- If the Network-Slave mode is required, this must be manually set, see Page 24.
- If no feedback is received from the fan motor, the unit will go into a fault condition.
- All commissioning settings are retained during a shut down or power failure.
- For models installed outdoors, once commissioning is complete, replace the controller display protective cover. Loosen centre fixing screw, fit cover and re-tighten.

If the user responds “Y” to the “Commissioning?” prompt, the procedures for the different commissioning modes are on the following pages.
a) Balancing the System

If, during the system set-up and balancing, the fan is required to run for long periods of time at either minimum speed or maximum speed, irrespective of what sensors or switches are active, it is possible to do this by interrupting the commissioning process. In all of the following commissioning diagrams, a stage is reach approx half way through where the installer is asked to “Set the Control Mode” followed by “Minimum Speed, Enter to set” and “Maximum Speed, Enter to Set”. In both the Minimum Speed Stage and the Maximum Speed stage, once the required speeds are entered, the fan will run at that required speed continuously until Param is pressed. If system work is required at either of these speed settings, do not enter Param to confirm that setting until the required installation work is complete. See below.

![Diagram showing the process for balancing the system](image-url)
b) **MIN-MAX**

The commissioning flowchart is shown diagrammatically in Fig.30. The typical display at the end of the set-up gives the following information:-

- **MM trickle 020%**
 - Where **MM** = Min-Max mode
 - **trickle** = minimum speed, no switch input is active
 - **MM speed = 100%** e.g., = maximum speed switched input is active
c) **Proportional Control**

The proportional control commissioning flowchart is shown diagrammatically in Fig.31. The typical display at the end of the setting-up process gives the following information:-

C0700H065T023 050
Where C0700 = CO2 concentration being measured in ppm
H065 = % relative humidity level if sensor fitted (default = 000)
T023 = temperature being measured in dig’s
050 = running speed of fan is 50% of full load speed, depending on the 0-10V sensor output levels

C0700H065T023 050
Where C0700 = CO2 concentration being measured in ppm
H065 = % relative humidity level if sensor fitted (default = 000)
T023 = temperature being measured in dig’s
050 = running speed of fan is 50% of full load speed, depending on the 0-10V sensor output levels
d) **Remote/Local Proportional Control**

The remote/local commissioning flowchart is shown diagrammatically in Fig. 32.

Fig 32. Remote/Local Commissioning
Network Slave Mode

To commission a Slave unit, firstly commission the Master unit and then install the network cables. With the Master unit running, then commission the Slave unit as shown diagrammatically in Fig.33. The typical display at the end of the set-up procedure gives the following information:

Slave Mx1.2 020%
Where Slave = slave mode
Mx1.2 = fan speed received on network multiplied by the slave gain factor
020% = slave fan speed e.g.

Fig 33. Slave Commissioning
f) **Constant Pressure**

This is shown diagrammatically in Fig.34. The typical display at the end of commissioning gives the following information:

```
CP S250 M230 066
Where CP = Constant Pressure mode
S150 = Pressure Set Point, Pa., e.g.
M130 = Measured Pressure, Pa., e.g.
066 = Fan Speed 66% for example
```
Controller Display Line Status Messages

<table>
<thead>
<tr>
<th>ERROR MESSAGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Tach1 hi x</td>
<td>Fan 1 Fail Timeout in x seconds</td>
</tr>
<tr>
<td>Check Tach1 lo x</td>
<td>Fan 1 Fail Timeout in x seconds</td>
</tr>
<tr>
<td>Check Tach2 hi x</td>
<td>Fan 2 Fail Timeout in x seconds</td>
</tr>
<tr>
<td>Check Tach2 lo x</td>
<td>Fan 2 Fail Timeout in x seconds</td>
</tr>
<tr>
<td>Commissioning?</td>
<td>User can select Field Commissioning</td>
</tr>
<tr>
<td>Disabled-Master</td>
<td>Pins 61-62 link is open. Fan will not run.</td>
</tr>
<tr>
<td>Disabled-Network</td>
<td>Slave unit, Pins 61-62 link is open on Master. Fan will not run.</td>
</tr>
<tr>
<td>EEPROM checksum error</td>
<td>Internal hardware error</td>
</tr>
<tr>
<td>FAN 1 FAILED</td>
<td>Failure of fan 1, pcb or connecting wiring</td>
</tr>
<tr>
<td>Fan 1 test</td>
<td>Fan 1 being tested, during commissioning</td>
</tr>
<tr>
<td>FAN 2 FAILED</td>
<td>Failure of fan, pcb or connecting wiring</td>
</tr>
<tr>
<td>Fan 2 not fitted</td>
<td>Second fan not sensed during commissioning</td>
</tr>
<tr>
<td>Fan 2 test</td>
<td>Fan 2 being tested during commissioning</td>
</tr>
<tr>
<td>FAULT - No Master</td>
<td>No message received from Master, slave mode</td>
</tr>
<tr>
<td>No pressure sensor</td>
<td>No pressure detected during commissioning</td>
</tr>
<tr>
<td>Pressure sensor ok</td>
<td>Measured Pressure over threshold during commissioning</td>
</tr>
<tr>
<td>Pressure x Pa</td>
<td>Measured Pressure x Pascals during commissioning</td>
</tr>
<tr>
<td>Relay type fan</td>
<td>Displayed during commissioning</td>
</tr>
<tr>
<td>Tach rly pulses</td>
<td>Fan Tachometer/Alarm line pulsing when checked during commissioning</td>
</tr>
<tr>
<td>Tacho type fan</td>
<td>Displayed during commissioning.</td>
</tr>
<tr>
<td>Threshold x Pa</td>
<td>Pressure sensor detect threshold x Pascals during commissioning</td>
</tr>
<tr>
<td>F1/1</td>
<td>Single unit, fan 1 is in use (RUN)</td>
</tr>
<tr>
<td>F1/2</td>
<td>Twin unit, fan 1 is in use (RUN)</td>
</tr>
<tr>
<td>Hxxxxx</td>
<td>Total run time for fan</td>
</tr>
<tr>
<td>Open Damper 180s</td>
<td>Damper being opened; 180s timed delay on fan start</td>
</tr>
<tr>
<td>Close Damper</td>
<td>Damper being closed; 180s timed delay, fan not running</td>
</tr>
</tbody>
</table>
Sentinel Single Fan Spares List

<table>
<thead>
<tr>
<th>Item Reference</th>
<th>Component</th>
<th>Applicable Models</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motor</td>
<td>100/125/150</td>
<td>434597</td>
</tr>
<tr>
<td>1</td>
<td>"</td>
<td>200</td>
<td>434598</td>
</tr>
<tr>
<td>1</td>
<td>"</td>
<td>250</td>
<td>434599</td>
</tr>
<tr>
<td>1</td>
<td>"</td>
<td>315</td>
<td>434600</td>
</tr>
<tr>
<td>1</td>
<td>"</td>
<td>400</td>
<td>434601</td>
</tr>
<tr>
<td>1</td>
<td>"</td>
<td>500</td>
<td>434602</td>
</tr>
<tr>
<td>3</td>
<td>Pressure Sensor</td>
<td>All CP</td>
<td>434135</td>
</tr>
<tr>
<td>2</td>
<td>Pivot Mounting Bracket</td>
<td>100/125/150</td>
<td>434793</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>200/250</td>
<td>434829</td>
</tr>
<tr>
<td>4</td>
<td>Controller</td>
<td>All</td>
<td>434101</td>
</tr>
<tr>
<td>5</td>
<td>Controller Fuse</td>
<td>All</td>
<td>434794</td>
</tr>
<tr>
<td>6</td>
<td>Controller isolator knob</td>
<td>All</td>
<td>434795</td>
</tr>
<tr>
<td>7</td>
<td>Controller lid screw</td>
<td>All</td>
<td>434796</td>
</tr>
<tr>
<td>8</td>
<td>Controller Blind Grommet (Large)</td>
<td>All</td>
<td>434797</td>
</tr>
<tr>
<td>9</td>
<td>Controller Blind Grommet (Small)</td>
<td>All</td>
<td>434800</td>
</tr>
<tr>
<td>10</td>
<td>M20 Cable Gland</td>
<td>All</td>
<td>434798</td>
</tr>
<tr>
<td>11</td>
<td>M16 Cable Gland</td>
<td>All</td>
<td>434799</td>
</tr>
<tr>
<td>12</td>
<td>Controller Lid Gasket</td>
<td>All</td>
<td>434801</td>
</tr>
<tr>
<td>13</td>
<td>Controller Cover</td>
<td>Outdoor installation</td>
<td>475873</td>
</tr>
</tbody>
</table>

Illustration of Available Spares

![Illustration of Sentinel Single Fan Spares](image_url)
The Vent-Axia Guarantee

Applicable only to products installed and used in the United Kingdom. For details of guarantee outside the United Kingdom contact your local supplier.

Vent-Axia guarantees its products for two years from date of purchase against faulty material or workmanship. In the event of any part being found to be defective, the product will be repaired, or at the Company’s option replaced, without charge, provided that the product:-

- Has been installed and used in accordance with the instructions given with each unit.
- Has not been connected to an unsuitable electricity supply. (The correct electricity supply voltage is shown on the product rating label attached to the unit).
- Has not been subjected to misuse, neglect or damage.
- Has not been modified or repaired by any person not authorised by the company.

IF CLAIMING UNDER TERMS OF GUARANTEE

Please return the complete product, carriage paid to your original supplier or nearest Vent-Axia Centre, by post or personal visit. Please ensure that it is adequately packed and accompanied by a letter clearly marked “ Guarantee Claim” stating the nature of the fault and providing evidence of date and source of purchase.

The guarantee is offered to you as an extra benefit, and does not effect your legal rights.